Assumptions:
TeX:
\sum_{n=0}^{\infty} U_{n}\!\left(x\right) {z}^{n} = \frac{1}{1 - 2 x z + {z}^{2}}
x \in \left[-1, 1\right] \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Pow | Power | |
| Infinity | Positive infinity | |
| ClosedInterval | Closed interval | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("b5049d"),
Formula(Equal(Sum(Mul(ChebyshevU(n, x), Pow(z, n)), Tuple(n, 0, Infinity)), Div(1, Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2))))),
Variables(x, z),
Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))