Assumptions:
TeX:
\psi\!\left(-n + z\right) = -\frac{1}{z} + \psi\!\left(n + 1\right) + \sum_{k=1}^{\infty} \left({\left(-1\right)}^{k + 1} \zeta\!\left(k + 1\right) + \sum_{j=1}^{n} \frac{1}{{j}^{k + 1}}\right) {z}^{k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Sum | Sum | |
Pow | Power | |
RiemannZeta | Riemann zeta function | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("b4825b"), Formula(Equal(DigammaFunction(Add(Neg(n), z)), Add(Add(Neg(Div(1, z)), DigammaFunction(Add(n, 1))), Sum(Mul(Add(Mul(Pow(-1, Add(k, 1)), RiemannZeta(Add(k, 1))), Sum(Div(1, Pow(j, Add(k, 1))), For(j, 1, n))), Pow(z, k)), For(k, 1, Infinity))))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC), Less(Abs(z), 1))))