Fungrim home page

Fungrim entry: b478a1

RG ⁣(x,y,z)=RG ⁣(x,z,y)=RG ⁣(y,x,z)=RG ⁣(y,z,x)=RG ⁣(z,x,y)=RG ⁣(z,y,x)R_G\!\left(x, y, z\right) = R_G\!\left(x, z, y\right) = R_G\!\left(y, x, z\right) = R_G\!\left(y, z, x\right) = R_G\!\left(z, x, y\right) = R_G\!\left(z, y, x\right)
Assumptions:xC  and  yC  and  zCx \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
TeX:
R_G\!\left(x, y, z\right) = R_G\!\left(x, z, y\right) = R_G\!\left(y, x, z\right) = R_G\!\left(y, z, x\right) = R_G\!\left(z, x, y\right) = R_G\!\left(z, y, x\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRGRG ⁣(x,y,z)R_G\!\left(x, y, z\right) Carlson symmetric elliptic integral of the second kind
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("b478a1"),
    Formula(Equal(CarlsonRG(x, y, z), CarlsonRG(x, z, y), CarlsonRG(y, x, z), CarlsonRG(y, z, x), CarlsonRG(z, x, y), CarlsonRG(z, y, x))),
    Variables(x, y, z),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC