Assumptions:
TeX:
B_{n + {p}^{m}} \equiv m B_{n} + B_{n + 1} \pmod {p} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; p \in \mathbb{P} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BellNumber | Bell number | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
PP | Prime numbers |
Source code for this entry:
Entry(ID("b41c49"), Formula(CongruentMod(BellNumber(Add(n, Pow(p, m))), Add(Mul(m, BellNumber(n)), BellNumber(Add(n, 1))), p)), Variables(n, p, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(p, PP), Element(m, ZZGreaterEqual(1)))))