Assumptions:
TeX:
\,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = {\left(1 - z\right)}^{-a} \,{}_2{\textbf F}_1\!\left(a, c - b, c, \frac{z}{z - 1}\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Hypergeometric2F1Regularized | Regularized Gauss hypergeometric function | |
| Pow | Power | |
| CC | Complex numbers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("b25089"),
Formula(Equal(Hypergeometric2F1Regularized(a, b, c, z), Mul(Pow(Sub(1, z), Neg(a)), Hypergeometric2F1Regularized(a, Sub(c, b), c, Div(z, Sub(z, 1)))))),
Variables(a, b, c, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(1, Infinity)))))