Assumptions:
TeX:
H\!\left(\frac{a \tau + b}{c \tau + d}\right) = {\left(c \tau + d\right)}^{2} H(\tau)\; \text{ where } H(\tau) = G_{2}\!\left(\tau\right) - \frac{\pi}{\operatorname{Im}(\tau)} \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
EisensteinG | Eisenstein series | |
Pi | The constant pi (3.14...) | |
Im | Imaginary part | |
HH | Upper complex half-plane | |
Matrix2x2 | Two by two matrix | |
SL2Z | Modular group |
Source code for this entry:
Entry(ID("b1a5e4"), Formula(Where(Equal(H(Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Mul(Pow(Add(Mul(c, tau), d), 2), H(tau))), Equal(H(tau), Sub(EisensteinG(2, tau), Div(Pi, Im(tau)))))), Variables(tau, a, b, c, d), Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z))))