Assumptions:
TeX:
\zeta\!\left(s\right) = \frac{1}{s - 1} + \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{n !} \gamma_{n} {\left(s - 1\right)}^{n}
s \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Sum | Sum | |
| Pow | Power | |
| Factorial | Factorial | |
| StieltjesGamma | Stieltjes constant | |
| Infinity | Positive infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("b1a2e1"),
Formula(Equal(RiemannZeta(s), Add(Div(1, Sub(s, 1)), Sum(Mul(Mul(Div(Pow(-1, n), Factorial(n)), StieltjesGamma(n)), Pow(Sub(s, 1), n)), For(n, 0, Infinity))))),
Variables(s),
Assumptions(Element(s, CC)))