Assumptions:
TeX:
\zeta\!\left(s\right) = \frac{1}{s - 1} + \sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{n !} \gamma_{n} {\left(s - 1\right)}^{n} s \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
Pow | Power | |
Factorial | Factorial | |
StieltjesGamma | Stieltjes constant | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("b1a2e1"), Formula(Equal(RiemannZeta(s), Add(Div(1, Sub(s, 1)), Sum(Mul(Mul(Div(Pow(-1, n), Factorial(n)), StieltjesGamma(n)), Pow(Sub(s, 1), n)), For(n, 0, Infinity))))), Variables(s), Assumptions(Element(s, CC)))