Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
R_{N}\!\left(z\right) = \int_{0}^{\infty} \left(\frac{t}{2} \coth\!\left(\frac{t}{2}\right) - \sum_{k=0}^{N} \frac{B_{2 k}}{\left(2 k\right)!} {t}^{2 k}\right) \frac{{e}^{-z t}}{{t}^{3}} \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesGRemainder | Remainder term in asymptotic expansion of logarithmic Barnes G-function | |
Integral | Integral | |
Sum | Sum | |
BernoulliB | Bernoulli number | |
Factorial | Factorial | |
Pow | Power | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("b16d00"), Formula(Equal(LogBarnesGRemainder(N, z), Integral(Mul(Sub(Mul(Div(t, 2), Coth(Div(t, 2))), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Pow(t, Mul(2, k))), For(k, 0, N))), Div(Exp(Neg(Mul(z, t))), Pow(t, 3))), For(t, 0, Infinity)))), Variables(z, N), Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(N, ZZGreaterEqual(1)))), References("https://dx.doi.org/10.1098/rspa.2014.0534"))