Assumptions:
Alternative assumptions:
TeX:
\sqrt{z + x} = \sqrt{z} \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k} \left(-\frac{1}{2}\right)_{k}}{{z}^{k} k !} {x}^{k} z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left|x\right| \lt \left|z\right| \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) \gt 0 \,\mathbin{\operatorname{or}}\, \operatorname{sgn}\!\left(\operatorname{Im}\!\left(x\right)\right) = \operatorname{sgn}\!\left(\operatorname{Im}\!\left(z\right)\right)\right)\right) z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \text{ is the generator of } \mathbb{C}[[x]]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Pow | Power | |
RisingFactorial | Rising factorial | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value | |
Re | Real part | |
Sign | Sign function | |
Im | Imaginary part | |
FormalPowerSeries | Formal power series |
Source code for this entry:
Entry(ID("b14da0"), Formula(Equal(Sqrt(Add(z, x)), Mul(Sqrt(z), Sum(Mul(Div(Mul(Pow(-1, k), RisingFactorial(Neg(Div(1, 2)), k)), Mul(Pow(z, k), Factorial(k))), Pow(x, k)), Tuple(k, 0, Infinity))))), Variables(z, x), Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(x, CC), And(Less(Abs(x), Abs(z)), Or(Greater(Re(z), 0), Equal(Sign(Im(x)), Sign(Im(z)))))), And(Element(z, SetMinus(CC, Set(0))), FormalGenerator(x, FormalPowerSeries(CC, x)))))