Assumptions:
Alternative assumptions:
TeX:
\sqrt{z + x} = \sqrt{z} \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k} \left(-\frac{1}{2}\right)_{k}}{{z}^{k} k !} {x}^{k} z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left|x\right| < \left|z\right| \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}(z) > 0 \;\mathbin{\operatorname{or}}\; \operatorname{sgn}\!\left(\operatorname{Im}(x)\right) = \operatorname{sgn}\!\left(\operatorname{Im}(z)\right)\right)\right) z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; x \text{ is the generator of } \mathbb{C}[[x]]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Sum | Sum | |
Pow | Power | |
RisingFactorial | Rising factorial | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value | |
Re | Real part | |
Sign | Sign function | |
Im | Imaginary part | |
PowerSeries | Formal power series |
Source code for this entry:
Entry(ID("b14da0"), Formula(Equal(Sqrt(Add(z, x)), Mul(Sqrt(z), Sum(Mul(Div(Mul(Pow(-1, k), RisingFactorial(Neg(Div(1, 2)), k)), Mul(Pow(z, k), Factorial(k))), Pow(x, k)), For(k, 0, Infinity))))), Variables(z, x), Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(x, CC), And(Less(Abs(x), Abs(z)), Or(Greater(Re(z), 0), Equal(Sign(Im(x)), Sign(Im(z)))))), And(Element(z, SetMinus(CC, Set(0))), FormalGenerator(x, PowerSeries(CC, x)))))