The inverse tangent function
(denoted by Atan(z) in the Fungrim formula language) is a function of a single variable. The following table lists conditions such that Atan(z) is defined in Fungrim.
|
Table data:
such that
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Atan | Inverse tangent | |
RR | Real numbers | |
OpenInterval | Open interval | |
ConstPi | The constant pi (3.14...) | |
CC | Complex numbers | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
FormalPowerSeries | Formal power series |
Source code for this entry:
Entry(ID("b120b9"), SymbolDefinition(Atan, Atan(z), "Inverse tangent"), Description("The inverse tangent function", Atan(z), "(denoted by", SourceForm(Atan(z)), "in the Fungrim formula language)", "is a function of a single variable.", "The following table lists conditions such that", SourceForm(Atan(z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(Element(z, RR), Element(Atan(z), OpenInterval(Neg(Div(ConstPi, 2)), Div(ConstPi, 2)))), Tuple(Element(z, SetMinus(CC, Set(Neg(ConstI), Pos(ConstI)))), Element(Atan(z), CC)), TableSection("Infinities"), Tuple(Element(z, Set(Neg(Infinity), Infinity)), Element(Atan(z), Set(Neg(Div(ConstPi, 2)), Div(ConstPi, 2)))), Tuple(Element(z, Set(Neg(ConstI), Pos(ConstI))), Element(Atan(z), Set(Mul(Neg(ConstI), Infinity), Mul(Pos(ConstI), Infinity)))), TableSection("Formal power series"), Tuple(Element(z, FormalPowerSeries(RR, x)), Element(Atan(z), FormalPowerSeries(RR, x))), Tuple(And(Element(z, FormalPowerSeries(CC, x)), NotElement(SeriesCoefficient(z, x, 0), Set(Neg(ConstI), Pos(ConstI)))), Element(Atan(z), FormalPowerSeries(CC, x))))))