Assumptions:
TeX:
\zeta\!\left(z, \tau\right) = \frac{1}{z} + \sum_{{m}^{2} + {n}^{2} \ne 0} \frac{1}{z - m - n \tau} + \frac{1}{m + n \tau} + \frac{z}{{\left(m + n \tau\right)}^{2}}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassZeta | Weierstrass zeta function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("b10ca7"),
Formula(Equal(WeierstrassZeta(z, tau), Add(Div(1, z), SumCondition(Add(Add(Div(1, Sub(Sub(z, m), Mul(n, tau))), Div(1, Add(m, Mul(n, tau)))), Div(z, Pow(Add(m, Mul(n, tau)), 2))), Tuple(m, n), Unequal(Add(Pow(m, 2), Pow(n, 2)), 0))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))