Assumptions:
TeX:
\zeta\!\left(z, \tau\right) = \frac{1}{z} + \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{z - m - n \tau} + \frac{1}{m + n \tau} + \frac{z}{{\left(m + n \tau\right)}^{2}} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
WeierstrassZeta | Weierstrass zeta function | |
Sum | Sum | |
Pow | Power | |
ZZ | Integers | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("b10ca7"), Formula(Equal(WeierstrassZeta(z, tau), Add(Div(1, z), Sum(Add(Add(Div(1, Sub(Sub(z, m), Mul(n, tau))), Div(1, Add(m, Mul(n, tau)))), Div(z, Pow(Add(m, Mul(n, tau)), 2))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0)))))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))