Fungrim home page

Fungrim entry: b10ca7

ζ ⁣(z,τ)=1z+(m,n)Z2{(0,0)}1zmnτ+1m+nτ+z(m+nτ)2\zeta\!\left(z, \tau\right) = \frac{1}{z} + \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{z - m - n \tau} + \frac{1}{m + n \tau} + \frac{z}{{\left(m + n \tau\right)}^{2}}
Assumptions:zC  and  τH  and  zΛ(1,τ)z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}
TeX:
\zeta\!\left(z, \tau\right) = \frac{1}{z} + \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{z - m - n \tau} + \frac{1}{m + n \tau} + \frac{z}{{\left(m + n \tau\right)}^{2}}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol Notation Short description
WeierstrassZetaζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
Source code for this entry:
Entry(ID("b10ca7"),
    Formula(Equal(WeierstrassZeta(z, tau), Add(Div(1, z), Sum(Add(Add(Div(1, Sub(Sub(z, m), Mul(n, tau))), Div(1, Add(m, Mul(n, tau)))), Div(z, Pow(Add(m, Mul(n, tau)), 2))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0)))))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC