Assumptions:
TeX:
{\left(T_{n}\!\left(x\right)\right)}^{2} - T_{n - 1}\!\left(x\right) T_{n + 1}\!\left(x\right) \ge 0 n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left[-1, 1\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
ChebyshevT | Chebyshev polynomial of the first kind | |
ZZGreaterEqual | Integers greater than or equal to n | |
ClosedInterval | Closed interval |
Source code for this entry:
Entry(ID("b0c84b"), Formula(GreaterEqual(Sub(Pow(Parentheses(ChebyshevT(n, x)), 2), Mul(ChebyshevT(Sub(n, 1), x), ChebyshevT(Add(n, 1), x))), 0)), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, ClosedInterval(-1, 1)))))