Assumptions:
TeX:
G_{2 k}\!\left(\tau\right) = 2 \zeta\!\left(2 k\right) + 2 \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}
k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinG | Eisenstein series | |
| RiemannZeta | Riemann zeta function | |
| Sum | Sum | |
| Pow | Power | |
| ZZ | Integers | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("b07750"),
Formula(Equal(EisensteinG(Mul(2, k), tau), Add(Mul(2, RiemannZeta(Mul(2, k))), Mul(2, Sum(Sum(Div(1, Pow(Add(Mul(m, tau), n), Mul(2, k))), ForElement(n, ZZ)), For(m, 1, Infinity)))))),
Variables(k, tau),
Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(tau, HH))))