Assumptions:
TeX:
Y_{\nu}\!\left(z\right) = \frac{1}{\sin\!\left(\pi \nu\right)} \left(\cos\!\left(\pi \nu\right) {\left(\frac{z}{2}\right)}^{\nu} \,{}_0{\textbf F}_1\!\left(\nu + 1, -\frac{{z}^{2}}{4}\right) - {\left(\frac{z}{2}\right)}^{-\nu} \,{}_0{\textbf F}_1\!\left(1 - \nu, -\frac{{z}^{2}}{4}\right)\right) \nu \in \mathbb{C} \setminus \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselY | Bessel function of the second kind | |
Sin | Sine | |
ConstPi | The constant pi (3.14...) | |
Pow | Power | |
Hypergeometric0F1Regularized | Regularized confluent hypergeometric limit function | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("b049dc"), Formula(Equal(BesselY(nu, z), Mul(Div(1, Sin(Mul(ConstPi, nu))), Sub(Mul(Mul(Cos(Mul(ConstPi, nu)), Pow(Div(z, 2), nu)), Hypergeometric0F1Regularized(Add(nu, 1), Neg(Div(Pow(z, 2), 4)))), Mul(Pow(Div(z, 2), Neg(nu)), Hypergeometric0F1Regularized(Sub(1, nu), Neg(Div(Pow(z, 2), 4)))))))), Variables(nu, z), Assumptions(And(Element(nu, SetMinus(CC, ZZ)), Element(z, SetMinus(CC, Set(0))))))