Assumptions:
TeX:
\frac{{\left(\log\!\left(1 + x\right)\right)}^{k}}{k !} = \sum_{n=k}^{\infty} {\left(-1\right)}^{n - k} \left[{n \atop k}\right] \frac{{x}^{n}}{n !}
k \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| Log | Natural logarithm | |
| Factorial | Factorial | |
| StirlingCycle | Unsigned Stirling number of the first kind | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("b01280"),
Formula(Equal(Div(Pow(Log(Add(1, x)), k), Factorial(k)), Sum(Mul(Mul(Pow(-1, Sub(n, k)), StirlingCycle(n, k)), Div(Pow(x, n), Factorial(n))), Tuple(n, k, Infinity)))),
Variables(x, k),
Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(x, CC), Less(Abs(x), 1))))