Assumptions:
TeX:
\frac{\log^{k}\!\left(1 + x\right)}{k !} = \sum_{n=k}^{\infty} {\left(-1\right)}^{n - k} \left[{n \atop k}\right] \frac{{x}^{n}}{n !} k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Log | Natural logarithm | |
Factorial | Factorial | |
Sum | Sum | |
StirlingCycle | Unsigned Stirling number of the first kind | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("b01280"), Formula(Equal(Div(Pow(Log(Add(1, x)), k), Factorial(k)), Sum(Mul(Mul(Pow(-1, Sub(n, k)), StirlingCycle(n, k)), Div(Pow(x, n), Factorial(n))), For(n, k, Infinity)))), Variables(x, k), Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(x, CC), Less(Abs(x), 1))))