Fungrim home page

Fungrim entry: af7d3d

ζ ⁣(s,12)=(2s1)ζ ⁣(s)\zeta\!\left(s, \frac{1}{2}\right) = \left({2}^{s} - 1\right) \zeta\!\left(s\right)
Assumptions:sCs \in \mathbb{C}
TeX:
\zeta\!\left(s, \frac{1}{2}\right) = \left({2}^{s} - 1\right) \zeta\!\left(s\right)

s \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
HurwitzZetaζ ⁣(s,a)\zeta\!\left(s, a\right) Hurwitz zeta function
Powab{a}^{b} Power
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("af7d3d"),
    Formula(Equal(HurwitzZeta(s, Div(1, 2)), Mul(Sub(Pow(2, s), 1), RiemannZeta(s)))),
    Variables(s),
    Assumptions(Element(s, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC