Assumptions:
TeX:
\frac{d}{d z}\, \left[\log G(z)\right] = \left(z - 1\right) \psi\!\left(z\right) - z + \frac{\log\!\left(2 \pi\right) + 1}{2}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexBranchDerivative | Complex derivative, allowing branch cuts | |
| LogBarnesG | Logarithmic Barnes G-function | |
| DigammaFunction | Digamma function | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("af31ae"),
Formula(Equal(ComplexBranchDerivative(Brackets(LogBarnesG(z)), For(z, z)), Add(Sub(Mul(Sub(z, 1), DigammaFunction(z)), z), Div(Add(Log(Mul(2, Pi)), 1), 2)))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)))))