Assumptions:
TeX:
\wp\!\left(z, \tau\right) = {\left(\pi \theta_2\!\left(0, \tau\right) \theta_3\!\left(0, \tau\right) \frac{\theta_4\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)}\right)}^{2} - \frac{{\pi}^{2}}{3} \left({\left(\theta_2\!\left(0, \tau\right)\right)}^{4} + {\left(\theta_3\!\left(0, \tau\right)\right)}^{4}\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassP | Weierstrass elliptic function | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| JacobiTheta2 | Jacobi theta function | |
| JacobiTheta3 | Jacobi theta function | |
| JacobiTheta4 | Jacobi theta function | |
| JacobiTheta1 | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("af0dfc"),
Formula(Equal(WeierstrassP(z, tau), Sub(Pow(Mul(Mul(Mul(ConstPi, JacobiTheta2(0, tau)), JacobiTheta3(0, tau)), Div(JacobiTheta4(z, tau), JacobiTheta1(z, tau))), 2), Mul(Div(Pow(ConstPi, 2), 3), Add(Pow(JacobiTheta2(0, tau), 4), Pow(JacobiTheta3(0, tau), 4)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))