Assumptions:
TeX:
\wp\!\left(z, \tau\right) = {\left(\pi \theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \frac{\theta_{4}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)}\right)}^{2} - \frac{{\pi}^{2}}{3} \left(\theta_{2}^{4}\!\left(0, \tau\right) + \theta_{3}^{4}\!\left(0, \tau\right)\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
WeierstrassP | Weierstrass elliptic function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("af0dfc"), Formula(Equal(WeierstrassP(z, tau), Sub(Pow(Mul(Mul(Mul(Pi, JacobiTheta(2, 0, tau)), JacobiTheta(3, 0, tau)), Div(JacobiTheta(4, z, tau), JacobiTheta(1, z, tau))), 2), Mul(Div(Pow(Pi, 2), 3), Add(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(3, 0, tau), 4)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))