References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
TeX:
\sum_{n=0}^{\infty} \frac{1}{F_{2 n + 1} + 1} = \frac{\sqrt{5}}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Fibonacci | Fibonacci number | |
Infinity | Positive infinity | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("ae9d30"), Formula(Equal(Sum(Div(1, Add(Fibonacci(Add(Mul(2, n), 1)), 1)), For(n, 0, Infinity)), Div(Sqrt(5), 2))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))