TeX:
\int_{0}^{\infty} {\left(\theta'_{1}\!\left(0 , i t\right)\right)}^{2} \, dt = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{4 \pi}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Gamma | Gamma function | |
| Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("ae6718"),
Formula(Equal(Integral(Pow(JacobiTheta(1, 0, Mul(ConstI, t), 1), 2), For(t, 0, Infinity)), Div(Pow(Gamma(Div(1, 4)), 4), Mul(4, Pi)))))