Assumptions:
TeX:
\operatorname{erfc}\!\left(z\right) = \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \gt 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Erfc | Complementary error function | |
| Exp | Exponential function | |
| Pow | Power | |
| Sqrt | Principal square root | |
| ConstPi | The constant pi (3.14...) | |
| HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("ae3110"),
Formula(Equal(Erfc(z), Mul(Div(Exp(Neg(Pow(z, 2))), Mul(z, Sqrt(ConstPi))), HypergeometricUStar(Div(1, 2), Div(1, 2), Pow(z, 2))))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))))