Assumptions:
TeX:
\operatorname{erfc}(z) = \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | Complementary error function | |
Exp | Exponential function | |
Pow | Power | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("ae3110"), Formula(Equal(Erfc(z), Mul(Div(Exp(Neg(Pow(z, 2))), Mul(z, Sqrt(Pi))), HypergeometricUStar(Div(1, 2), Div(1, 2), Pow(z, 2))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))