Assumptions:
TeX:
\,{}_2F_1\!\left(a, b, c, z\right) = \sum_{k=0}^{\infty} \frac{\left(a\right)_{k} \left(b\right)_{k}}{\left(c\right)_{k}} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left|z\right| < 1 \;\mathbin{\operatorname{or}}\; a \in \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; b \in \{0, -1, \ldots\}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric2F1 | Gauss hypergeometric function | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("ad8db2"), Formula(Equal(Hypergeometric2F1(a, b, c, z), Sum(Mul(Div(Mul(RisingFactorial(a, k), RisingFactorial(b, k)), RisingFactorial(c, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Element(z, CC), Or(Less(Abs(z), 1), Element(a, ZZLessEqual(0)), Element(b, ZZLessEqual(0))))))