Assumptions:
TeX:
\sin^{2}\!\left(z\right) = \frac{\tan^{2}\!\left(z\right)}{1 + \tan^{2}\!\left(z\right)} z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \notin \left\{ \frac{\left(2 n + 1\right) \pi}{2} : n \in \mathbb{Z} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Sin | Sine | |
CC | Complex numbers | |
SetBuilder | Set comprehension | |
ConstPi | The constant pi (3.14...) | |
ZZ | Integers |
Source code for this entry:
Entry(ID("acf63c"), Formula(Equal(Pow(Sin(z), 2), Div(Pow(Tan(z), 2), Add(1, Pow(Tan(z), 2))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(z, SetBuilder(Div(Mul(Add(Mul(2, n), 1), ConstPi), 2), n, Element(n, ZZ))))))