References:
- https://oeis.org/A115977
TeX:
a(n) \sim {\left(-1\right)}^{n + 1} \frac{{e}^{2 \pi \sqrt{n}}}{32 {n}^{3 / 4}}, \; n \to \infty\; \text{ where } a(n) = [q^{n}] \lambda(\tau) \; \left(q = {e}^{\pi i \tau}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Sqrt | Principal square root | |
Infinity | Positive infinity | |
ModularLambda | Modular lambda function | |
ConstI | Imaginary unit |
Source code for this entry:
Entry(ID("ac236f"), Formula(Where(AsymptoticTo(a(n), Mul(Pow(-1, Add(n, 1)), Div(Exp(Mul(Mul(2, Pi), Sqrt(n))), Mul(32, Pow(n, Div(3, 4))))), n, Infinity), Equal(a(n), QSeriesCoefficient(ModularLambda(tau), tau, q, n, Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))))))), References("https://oeis.org/A115977"))