Assumptions:
TeX:
\theta_{4}^{2}\!\left(0, \tau\right) = \sum_{n=-\infty}^{\infty} \frac{1}{\cos\!\left(\pi \left(\tau + 1\right) n\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Infinity | Positive infinity | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("ab1c77"),
Formula(Equal(Pow(JacobiTheta(4, 0, tau), 2), Sum(Div(1, Cos(Mul(Mul(Pi, Add(tau, 1)), n))), For(n, Neg(Infinity), Infinity)))),
Variables(tau),
Assumptions(Element(tau, HH)))