Assumptions:
TeX:
\theta_{2}\!\left(2 z , \tau\right) = \frac{\theta_{2}^{2}\!\left(z, \tau\right) \theta_{3}^{2}\!\left(z, \tau\right) - \theta_{1}^{2}\!\left(z, \tau\right) \theta_{4}^{2}\!\left(z, \tau\right)}{\theta_{2}\!\left(0 , \tau\right) \theta_{3}^{2}\!\left(0, \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Pow | Power | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("aaa582"), Formula(Equal(JacobiTheta(2, Mul(2, z), tau), Div(Sub(Mul(Pow(JacobiTheta(2, z, tau), 2), Pow(JacobiTheta(3, z, tau), 2)), Mul(Pow(JacobiTheta(1, z, tau), 2), Pow(JacobiTheta(4, z, tau), 2))), Mul(JacobiTheta(2, 0, tau), Pow(JacobiTheta(3, 0, tau), 2))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))