Assumptions:
TeX:
\theta_{2}\!\left(z , \frac{\tau}{2}\right) = \frac{2 \theta_{2}\!\left(z , \tau\right) \theta_{3}\!\left(z , \tau\right)}{\theta_{2}\!\left(0 , \frac{\tau}{2}\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a9cdda"),
Formula(Equal(JacobiTheta(2, z, Div(tau, 2)), Div(Mul(Mul(2, JacobiTheta(2, z, tau)), JacobiTheta(3, z, tau)), JacobiTheta(2, 0, Div(tau, 2))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))