Assumptions:
TeX:
\theta_{2}\!\left(0 , \tau\right) = \frac{2 \eta^{2}\!\left(2 \tau\right)}{\eta(\tau)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| DedekindEta | Dedekind eta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a9c825"),
Formula(Equal(JacobiTheta(2, 0, tau), Div(Mul(2, Pow(DedekindEta(Mul(2, tau)), 2)), DedekindEta(tau)))),
Variables(tau),
Assumptions(Element(tau, HH)))