Assumptions:
TeX:
\frac{{\left({e}^{x} - 1\right)}^{k}}{k !} = \sum_{n=k}^{\infty} \left\{{n \atop k}\right\} \frac{{x}^{n}}{n !} k \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Exp | Exponential function | |
Factorial | Factorial | |
StirlingS2 | Stirling number of the second kind | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("a9a610"), Formula(Equal(Div(Pow(Sub(Exp(x), 1), k), Factorial(k)), Sum(Mul(StirlingS2(n, k), Div(Pow(x, n), Factorial(n))), Tuple(n, k, Infinity)))), Variables(x, k), Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(x, CC))))