Assumptions:
TeX:
\frac{{\left({e}^{x} - 1\right)}^{k}}{k !} = \sum_{n=k}^{\infty} \left\{{n \atop k}\right\} \frac{{x}^{n}}{n !}
k \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| Exp | Exponential function | |
| Factorial | Factorial | |
| StirlingS2 | Stirling number of the second kind | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("a9a610"),
Formula(Equal(Div(Pow(Sub(Exp(x), 1), k), Factorial(k)), Sum(Mul(StirlingS2(n, k), Div(Pow(x, n), Factorial(n))), Tuple(n, k, Infinity)))),
Variables(x, k),
Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(x, CC))))