Assumptions:
TeX:
\sum_{n=1}^{\infty} \frac{\varphi(n)}{n} \log\!\left(1 - {x}^{n}\right) = \frac{x}{x - 1} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Totient | Euler totient function | |
Log | Natural logarithm | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("a9a405"), Formula(Equal(Sum(Mul(Div(Totient(n), n), Log(Sub(1, Pow(x, n)))), For(n, 1, Infinity)), Div(x, Sub(x, 1)))), Variables(x), Assumptions(And(Element(x, CC), Less(Abs(x), 1))))