Assumptions:
TeX:
\sum_{n=1}^{\infty} \frac{\varphi(n)}{n} \log\!\left(1 - {x}^{n}\right) = \frac{x}{x - 1}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Totient | Euler totient function | |
| Log | Natural logarithm | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("a9a405"),
Formula(Equal(Sum(Mul(Div(Totient(n), n), Log(Sub(1, Pow(x, n)))), For(n, 1, Infinity)), Div(x, Sub(x, 1)))),
Variables(x),
Assumptions(And(Element(x, CC), Less(Abs(x), 1))))