Assumptions:
TeX:
E_{4}\!\left(\tau\right) = 1 + 30 \sum_{m=1}^{\infty} \frac{\cos^{2}\!\left(\pi m \tau\right) + 1}{\sin^{4}\!\left(\pi m \tau\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinE | Normalized Eisenstein series | |
| Sum | Sum | |
| Pow | Power | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Sin | Sine | |
| Infinity | Positive infinity | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a92c1a"),
Formula(Equal(EisensteinE(4, tau), Add(1, Mul(30, Sum(Div(Add(Pow(Cos(Mul(Mul(Pi, m), tau)), 2), 1), Pow(Sin(Mul(Mul(Pi, m), tau)), 4)), For(m, 1, Infinity)))))),
Variables(tau),
Assumptions(And(Element(tau, HH))))