Assumptions:
TeX:
U_{n}\!\left(x\right) = \sum_{k=0}^{n} \frac{{2}^{k} \left(n + k + 1\right)!}{\left(n - k\right)! \left(2 k + 1\right)!} {\left(x - 1\right)}^{k}
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Sum | Sum | |
| Pow | Power | |
| Factorial | Factorial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("a9077a"),
Formula(Equal(ChebyshevU(n, x), Sum(Mul(Div(Mul(Pow(2, k), Factorial(Add(Add(n, k), 1))), Mul(Factorial(Sub(n, k)), Factorial(Add(Mul(2, k), 1)))), Pow(Sub(x, 1), k)), For(k, 0, n)))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))