Assumptions:
TeX:
\theta_{j}\!\left(\overline{z} , \tau\right) = \overline{\theta_{j}\!\left(z , -\overline{\tau}\right)}
j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Conjugate | Complex conjugate | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a891da"),
Formula(Equal(JacobiTheta(j, Conjugate(z), tau), Conjugate(JacobiTheta(j, z, Neg(Conjugate(tau)))))),
Variables(j, z, tau),
Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH))))