Assumptions:
TeX:
\chi = {\chi}_{0} {\chi}_{1} \;\text{ for some } \left(d, {\chi}_{0}\right) \text{ with } d \in \{1, 2, \ldots, q\} \;\mathbin{\operatorname{and}}\; d \mid q \;\mathbin{\operatorname{and}}\; {\chi}_{0} \in G^{\text{Primitive}}_{d}\; \text{ where } {\chi}_{1} = \chi_{q \, . \, 1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Range | Integers between given endpoints | |
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
DirichletCharacter | Dirichlet character | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("a7d592"), Formula(Where(Exists(Equal(chi, Mul(Subscript(chi, 0), Subscript(chi, 1))), For(Tuple(d, Subscript(chi, 0))), And(Element(d, Range(1, q)), Divides(d, q), Element(Subscript(chi, 0), PrimitiveDirichletCharacters(d)))), Equal(Subscript(chi, 1), DirichletCharacter(q, 1)))), Variables(q, Subscript(chi, 0)), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))