Assumptions:
TeX:
\Gamma(z) \Gamma\!\left(z + \frac{1}{2}\right) = {2}^{1 - 2 z} \sqrt{\pi} \Gamma\!\left(2 z\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; 2 z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Gamma | Gamma function | |
Pow | Power | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("a787eb"), Formula(Equal(Mul(Gamma(z), Gamma(Add(z, Div(1, 2)))), Mul(Mul(Pow(2, Sub(1, Mul(2, z))), Sqrt(Pi)), Gamma(Mul(2, z))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(Mul(2, z), ZZLessEqual(0)))))