Fungrim home page

Fungrim entry: a747a4

BnknkB_{n} \ge {k}^{n - k}
Assumptions:nZ0  and  kZ0n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
References:
  • https://cs.stackexchange.com/q/93003
TeX:
B_{n} \ge {k}^{n - k}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("a747a4"),
    Formula(GreaterEqual(BellNumber(n), Pow(k, Sub(n, k)))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZGreaterEqual(0)))),
    References("https://cs.stackexchange.com/q/93003"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC