Assumptions:
References:
- https://arxiv.org/abs/0708.3301
TeX:
B_{n} = \frac{2 n !}{\pi e} \int_{0}^{\pi} {e}^{{e}^{\cos(x)} \cos\left(\sin(x)\right)} \sin\!\left({e}^{\cos(x)} \sin\!\left(\sin(x)\right)\right) \sin\!\left(n x\right) \, dx n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BellNumber | Bell number | |
Factorial | Factorial | |
Pi | The constant pi (3.14...) | |
ConstE | The constant e (2.718...) | |
Integral | Integral | |
Pow | Power | |
Cos | Cosine | |
Sin | Sine | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a71381"), Formula(Equal(BellNumber(n), Mul(Div(Mul(2, Factorial(n)), Mul(Pi, ConstE)), Integral(Mul(Mul(Pow(ConstE, Mul(Pow(ConstE, Cos(x)), Cos(Sin(x)))), Sin(Mul(Pow(ConstE, Cos(x)), Sin(Sin(x))))), Sin(Mul(n, x))), For(x, 0, Pi))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))), References("https://arxiv.org/abs/0708.3301"))