Fungrim home page

Fungrim entry: a71381

Bn=2n!πe0πeecos(x)cos(sin(x))sin ⁣(ecos(x)sin ⁣(sin(x)))sin ⁣(nx)dxB_{n} = \frac{2 n !}{\pi e} \int_{0}^{\pi} {e}^{{e}^{\cos(x)} \cos\left(\sin(x)\right)} \sin\!\left({e}^{\cos(x)} \sin\!\left(\sin(x)\right)\right) \sin\!\left(n x\right) \, dx
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
References:
  • https://arxiv.org/abs/0708.3301
TeX:
B_{n} = \frac{2 n !}{\pi e} \int_{0}^{\pi} {e}^{{e}^{\cos(x)} \cos\left(\sin(x)\right)} \sin\!\left({e}^{\cos(x)} \sin\!\left(\sin(x)\right)\right) \sin\!\left(n x\right) \, dx

n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Factorialn!n ! Factorial
Piπ\pi The constant pi (3.14...)
ConstEee The constant e (2.718...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Coscos(z)\cos(z) Cosine
Sinsin(z)\sin(z) Sine
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("a71381"),
    Formula(Equal(BellNumber(n), Mul(Div(Mul(2, Factorial(n)), Mul(Pi, ConstE)), Integral(Mul(Mul(Pow(ConstE, Mul(Pow(ConstE, Cos(x)), Cos(Sin(x)))), Sin(Mul(Pow(ConstE, Cos(x)), Sin(Sin(x))))), Sin(Mul(n, x))), For(x, 0, Pi))))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(1))),
    References("https://arxiv.org/abs/0708.3301"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC