Assumptions:
TeX:
{T}^{(r)}_{n}(1) = \frac{\left(n\right)_{r} \left(n - r + 1\right)_{r}}{\left(2 r - 1\right)!!} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
ChebyshevT | Chebyshev polynomial of the first kind | |
RisingFactorial | Rising factorial | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a68f0e"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, 1, r)), Div(Mul(RisingFactorial(n, r), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Sub(Mul(2, r), 1))))), Variables(n, r), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))