Fungrim home page

Fungrim entry: a68e0e

Im ⁣(Wk ⁣(z))(sgn ⁣(k)(2k2)π,sgn ⁣(k)(2k+1)π)\operatorname{Im}\!\left(W_{k}\!\left(z\right)\right) \in \left(\operatorname{sgn}\!\left(k\right) \left(2 \left|k\right| - 2\right) \pi, \operatorname{sgn}\!\left(k\right) \left(2 \left|k\right| + 1\right) \pi\right)
Assumptions:zC{0}andkZ{1,0,1}z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z} \setminus \left\{-1, 0, 1\right\}
TeX:
\operatorname{Im}\!\left(W_{k}\!\left(z\right)\right) \in \left(\operatorname{sgn}\!\left(k\right) \left(2 \left|k\right| - 2\right) \pi, \operatorname{sgn}\!\left(k\right) \left(2 \left|k\right| + 1\right) \pi\right)

z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z} \setminus \left\{-1, 0, 1\right\}
Definitions:
Fungrim symbol Notation Short description
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
OpenInterval(a,b)\left(a, b\right) Open interval
Signsgn ⁣(z)\operatorname{sgn}\!\left(z\right) Sign function
Absz\left|z\right| Absolute value
ConstPiπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("a68e0e"),
    Formula(Element(Im(LambertW(k, z)), OpenInterval(Mul(Mul(Sign(k), Sub(Mul(2, Abs(k)), 2)), ConstPi), Mul(Mul(Sign(k), Add(Mul(2, Abs(k)), 1)), ConstPi)))),
    Variables(z, k),
    Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(k, SetMinus(ZZ, Set(-1, 0, 1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC