Fungrim home page

Fungrim entry: a6667d

sin(r+2)(z)=sin(r)(z){\sin}^{(r + 2)}(z) = -{\sin}^{(r)}(z)
Assumptions:zC  and  rZ0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
{\sin}^{(r + 2)}(z) = -{\sin}^{(r)}(z)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Sinsin(z)\sin(z) Sine
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(ComplexDerivative(Sin(z), For(z, z, Add(r, 2))), Neg(ComplexDerivative(Sin(z), For(z, z, r))))),
    Variables(z, r),
    Assumptions(And(Element(z, CC), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC