Assumptions:
TeX:
\theta_{3}^{k}\!\left(0, \tau\right) = \sum_{n=0}^{\infty} r_{k}\!\left(n\right) {q}^{n}\; \text{ where } q = {e}^{\pi i \tau} k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
SquaresR | Sum of squares function | |
Infinity | Positive infinity | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
ZZGreaterEqual | Integers greater than or equal to n | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a5e568"), Formula(Equal(Pow(JacobiTheta(3, 0, tau), k), Where(Sum(Mul(SquaresR(k, n), Pow(q, n)), For(n, 0, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(k, tau), Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(tau, HH))))