References:
- https://doi.org/10.7169/facm/1317045228
TeX:
\left(\operatorname{RH}\right) \iff \left(\sum_{n=1}^{\infty} {\left|\lambda_{n} - a(n)\right|}^{2} < \infty\; \text{ where } a(n) = \frac{\log(n)}{2} - \frac{\log\!\left(2 \pi\right) + 1 - \gamma}{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannHypothesis | Riemann hypothesis | |
Sum | Sum | |
Pow | Power | |
Abs | Absolute value | |
KeiperLiLambda | Keiper-Li coefficient | |
Infinity | Positive infinity | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
ConstGamma | The constant gamma (0.577...) |
Source code for this entry:
Entry(ID("a5d65f"), Formula(Equivalent(RiemannHypothesis, Where(Less(Sum(Pow(Abs(Sub(KeiperLiLambda(n), a(n))), 2), For(n, 1, Infinity)), Infinity), Equal(a(n), Sub(Div(Log(n), 2), Div(Sub(Add(Log(Mul(2, Pi)), 1), ConstGamma), 2)))))), References("https://doi.org/10.7169/facm/1317045228"))