Assumptions:
TeX:
I_{1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sinh(z)}{z} z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselI | Modified Bessel function of the first kind | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("a59981"), Formula(Equal(BesselI(Div(1, 2), z), Mul(Pow(Div(Mul(2, z), Pi), Div(1, 2)), Div(Sinh(z), z)))), Variables(z), Assumptions(Element(z, SetMinus(CC, Set(0)))))