TeX:
\sum_{n=0}^{\infty} \frac{1}{x_{n}^{4}} = {\gamma}^{4} + \frac{{\pi}^{4}}{9} + \frac{2 {\gamma}^{2} {\pi}^{2}}{3} + 4 \gamma \zeta\!\left(3\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
DigammaFunctionZero | Zero of the digamma function | |
Infinity | Positive infinity | |
ConstGamma | The constant gamma (0.577...) | |
Pi | The constant pi (3.14...) | |
RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("a4f9c9"), Formula(Equal(Sum(Div(1, Pow(DigammaFunctionZero(n), 4)), For(n, 0, Infinity)), Add(Add(Add(Pow(ConstGamma, 4), Div(Pow(Pi, 4), 9)), Div(Mul(Mul(2, Pow(ConstGamma, 2)), Pow(Pi, 2)), 3)), Mul(4, Mul(ConstGamma, RiemannZeta(3)))))))