Assumptions:
TeX:
\sum_{n=0}^{q - 1} {\chi}_{1}(n) \overline{{\chi}_{2}(n)} = \begin{cases} \varphi(q), & {\chi}_{1} = {\chi}_{2}\\0, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; {\chi}_{1} \in G_{q} \;\mathbin{\operatorname{and}}\; {\chi}_{2} \in G_{q}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Conjugate | Complex conjugate | |
Totient | Euler totient function | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("a4e947"), Formula(Equal(Sum(Mul(Subscript(chi, 1)(n), Conjugate(Subscript(chi, 2)(n))), For(n, 0, Sub(q, 1))), Cases(Tuple(Totient(q), Equal(Subscript(chi, 1), Subscript(chi, 2))), Tuple(0, Otherwise)))), Variables(q, Subscript(chi, 1), Subscript(chi, 2)), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(Subscript(chi, 1), DirichletGroup(q)), Element(Subscript(chi, 2), DirichletGroup(q)))))